01. Escrever as equações na forma reduzida:
a) (x+1)2 = 4x +
4
x2 + 2x + 1 =
4x + 4
x2 + 2x - 4x +1 – 4 = 0
x2 - 2x – 3 = 0
b) x(x-6) + 8 = 0
x2 – 6x + 8 = 0
c) 2x2 = - 12x -
18
2x2
+ 12x + 18 = 0

d) x2 - 2x +
3 = 0
3
x - 6x + 9
= 0

x - 6x + 9
= 0
e) x2 - 5x - 3 = 0
4 2
4x2 -
5x - 6 =
0

4x2 -
5x - 6 = 0
02. Resolver as seguintes
equações
a) x2 – 6x + 8 = 0

∆ = b2 - 4ac
∆ = ( -6)2 – 4.1.8
∆ =
36 - 32
∆ = 4
x = - b ± √ ∆
= - (-6 ) ± √ 4 = 6
± 2
2a 2 . 1 2
2 2
b)
x2 + 2x + 8 = 0
∆ = b2
- 4ac
∆ = 22
– 4.1.8 S = { }
∆ =
4 - 32
∆ = - 28 < 0
c)
x2 + 4x + 10 = 0
∆ = b2 - 4ac

∆ =
4 - 40
∆ = - 36 < 0
d)
3x2 - 7x + 2 = 0
∆ = (-7)2
– 4.3.2
∆ =
49 - 24
∆ = 25

x = - b ± √ ∆
= - (-7 ) ± √ 25 = 7
± 5
2a 2 . 3 6


x’ = 7 + 5 = 12 = 2
6 6
x” = = 7 - 5 = 2 = 1 .
6 6 3
S = { 1 , 2 }
3
e) x2 + 9 = 4x
x2 - 4x + 9 = 0
∆ = b2 - 4ac
∆ = (-4)2
– 4.1.9 S = {
}
∆ =
16 - 36
∆ = - 20
< 0
f) x2 - 6x + 9 = 0
∆ = b2 - 4ac
∆ = (-6)2
– 4.1.9
∆ =
36 - 36
∆ = 0
x’ = x” = - b = - ( - 6 ) = 6 = 3
2a 2.1 2
S = { 3 }